Für Mensch & Umwelt Understand Risk, Venedig 18.5.2016 Risk assessment, risk reduction and risk mitigation – what role do models, numbers, text and stories play?

Qualitative and quantitative approaches for assessing climate change impacts on future infrastructures

Inke Schauser Federal Environment Agency (UBA), Germany Climate Change and Adaptation (KomPass)

Umwelt 🎲 Bundesamt

Climate change impacts on infrastructures in Europe

- Climate hazard impacts to critical infrastructures may strongly rise in Europe: Indicative estimates of total damages from 7 climate hazards to society could rise from currently 12 billion €/year to nearly 80 billion €/year by the end of this century.
- Economic losses are highest for the industry, transport and energy sectors. The strongest increase in multi-hazard damages is projected for the energy sector, for which the baseline expected annual damage (EAD) of 0.5 billion €/year could rise to 2.0, 4.4, and 8.2 billion €/year by the 2020s, 2050s and 2080s, respectively.
- 3. Impact and adaptation costs do not fall equally across Europe. Southern and south-eastern European countries will be most impacted.

Forzieri, G., Bianchi, A., Marin Herrera, M.A., Batista e Silva, F., Feyen, L. and Lavalle, C., 2015. Resilience of large investments and critical infrastructures in Europe to climate change. EUR 27598 EN. Luxembourg (Luxembourg): Publications Office of the European Union.

Source: JRC Technical Report für EU KOM: "Resilience of large investments and critical infrastructures in Europe to climate change" 2015 http://publications.jrc.ec.europa.eu/repository/handle/JRC98159

- 1. Gradual and extreme temperature changes, and other extreme weather events will impact the energy industry. The impacts of climate change are largely dependent on the current and future composition of the energy infrastructure.
- 2. Most climate change impacts on the energy industry will be of low to medium importance for Germany.
- 3. Many experts believe that the necessary restructuring of the energy industry in the context of climate protection constitutes the biggest challenge. They estimate that the energy industry has an overall high adaptive capacity so that the action field's vulnerability (→ IPCC 2007) in the near future is considered as low.

User, Purpose and Aim

Task defined in the German National Adaptation Strategy:

- User: National Steering Group (IMA)
- Purpose: "to prioritize risks and derive adaptation needs at the federal level"
- Aim: "consistent, actual, cross-sector vulnerability assessment including adaptive capacity "
- \rightarrow rising awareness
- \rightarrow allocate resources

Mix of quantitative and qualitative information/results

Excursion: qualitative vs quantitative approaches

Quantitative results	Qualitative results
Numbers, values, maps, graphs	Pictures, stories, words, estimations, narratives
 + details + methodological transparency + calculation of complex relations and non-linearities, statistical uncertainties 	 + summary of experience and knowledge + not data dependent + involvement of stakeholders
 only apparently accurate and objective: hidden uncertainty (system understanding, data, models) and normative aspects 	 transparency and robustness representativeness and legitimation

- \rightarrow Visualisation: creating an impression/image
- \rightarrow Danger: Simplification and Misuse

Methodology

German Vulnerability Assessment: Methodology

Szenario combinations "weak change" and "strong change"

- Climate exposure: 15. and 85. percentil of RCM ensemble until 2100
- Sensitivity: 2 socio-economic scenarios (stagnation and growth) for 2030:
 - Population (migration balance, number of older people)
 - Gross domestic income
 - Household disposable income
 - Land use

Infrastructures

Infrastructures are **socio-technical systems**. They are composed out of the infrastructure itself, its service to its users as well as the institutions needed to build and manage it.

are sensitive because of :

- Age/Condition
- Construction
- Location
- Functionality/Usages

```
...
```


Climate change impacts on energy industries

HydropowerCooling water for thermal power plantsWind energyProxy indicatorsHeating energy demandCooling energy demandDamage to power plantsExpert interviewsCooling energy demandDamage to Beliability of	Process models				
Heating energy demand Cooling energy demand Damage to power plants Expert interviews Damage to Reliability of	Hydropower	for thermal	Wind energy		
Heating energy demand Cooling energy demand Damage to power plants Expert interviews Damage to Reliability of	Proxy indicators				
Expert interviews Damage to Reliability of			Damage to		
Cooling energy Damage to Reliability of	• • • • • •	• • • • • •	-		
Cooling energy Damage to Reliability of	Expert interv	iews			
	Cooling energy		Reliability of		

Quantitative results: Cooling energy demand

Qualitative results: Cooling energy demand

Results for the energy sector

	Importance			
Climate change impact	Present	Near Future – weak change	Near Future – strong change	Confidence
Cooling water for thermal power plants				medium
Heating energy demand				medium
Cooling energy demand	low	low	medium	low
Damage to power plants				low

Results for the energy sector

	Importance			
Climate change impact	Present	Near Future – weak change	Near Future – strong change	Confidence
Hydropower				Medium to high
Wind energy				low
Damage to transition networks				medium
Reliability of energy supply				low

German Vulnerability Assessment: Energy infrastructures

- 1. Most climate change impacts on the energy industry will be of low to medium importance for Germany.
- 2. Many experts estimate that the energy industry has an overall high adaptive capacity so that the action field's vulnerability in the near future is considered as low.
- \rightarrow No information about sensitivity in the distant future
- \rightarrow And only very limited information for the near future

Future Infrastructures

Change driven by

- Environment (and legislative) pressures, i.e. climate change (mitigation and adaptation),
- Economic pressures, i.e. liberalization, fossil energy availability/price,
- **Technological** change and innovations, i.e. digitalization, aging/modernization
- Social change, i.e. demographic change, urbanization but also social innovation, i.e. new forms of governance and private ownerships

Future Infrastructures

Pressures can lead to more

- Centralized decentralized
- Robust/stabile flexible
- Autonomous connected
- Common diverse
- Grey- Blue/green

infrastructures.

- → Probably to more infrastructures,
- → But also to more resilient infrastructures?

Summary

- Sensitivity of future infrastructures is difficult to project in a changing system.
- Also for sensitivity: ensembles are needed
- Future sensitivity can be described by trends (i.e. location) but also on changes, which can only be described qualitatively (qualitative scenarios?)
- Numbers can be a good eye catcher but be aware of uncertainty!

Users like to have simple messages to justify decisions – but be aware of misunderstanding and misuse

Umwelt 🌍 Bundesamt

KomPass Kompetenzzentrum Klimafolgen und Anpassung

Dr. Inke Schauser

Federal Environment Agency (Umweltbundesamt)

Section KomPass - Climate Impacts and Adaptation in Germany

Wörlitzer Platz 1 06844 Dessau-Roßlau Germany

tel: +49 (0)340 2103 2463 fax: +49 (0)340 2014 2463 inke.schauser@uba.de

