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What is socio-hydrology?

What is socio-hydrology?

Socio-hydrology aims to describe the two-way coupled feedbacks between

water systems and human behaviour:

The water system impacts the behaviour of the population.

(e.g. flood risk prevention)

Human behaviour also affects the water system.

(e.g. building of dikes)

Until recently research mainly focused on quantitative model analysis.
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What is socio-hydrology?

Stochastic flood events and optimal behaviour

Two different present approaches for flood models:

Stochastic modelling of high water levels with a priori defined

economic reactions and behaviour (e.g. Viglione et al. 2014)

Modelling the social optimal decisions with deterministic appearance

of high water levels (e.g. Grames et al. 2016)

My aim: Combine the two approaches and derive social optimal behaviour

under stochastic appearance of high water levels.

This includes two parts

Optimal decisions before a flood occurs (prevention)

Optimal reaction after flood occurrence (adaptation)
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Model introduction

Basic model structure

We formulate a 2-stage optimal control problem with stochastic switching

time:

STAGE 1 
(before the flood)

Consumption

Production Capital
Investment

Defense Capital
Investment
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Model introduction

Stochastic Model formulation

First stage optimisation

max
c(t),id (t)

Eτ
[∫ τ

0

e−ρtu(c(t))dt + e−ρτV ∗(Ki (τ), τ)

]
s.t.: K̇y (t) = AKy (t)

α − c(t)− Q(id(t))− δyKy (t) Ky (0) = K 0
y

K̇d(t) = id(t)− δdKd(t) Kd(0) = K 0
d

Second stage optimisation

V ∗(Ki (τ), τ) = max
c(t),id (t)

∫ T

τ
e−ρ(t−τ)u(c(t))dt + e−ρ(T−τ)SalvageValue

s.t.: K̇y (t) = AKy (t)
α − c(t)− Q(id (t))− δy Ky (t) Ky (τ) = lim

s→τ−
(1− d(Kd (s)))Ky (s)

K̇d (t) = id (t)− δd Kd (t) Kd (τ) = lim
s→τ−

(1− d(Kd (s)))Kd (s)
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Model introduction

Properties of the switching time τ

The switching time = occurrence of a flood, which depends on two

factors:

Exogenous given stochastic appearances of high water levels. E.g.

Poisson-distributed arrival −→ exponentially distributed time until

flood.

Probability that the high water level surpasses the size of the defense

capital (i.e. dikes).

We can derive the density function of flood occurrence as the product of

the two terms.
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Model introduction

Properties of the damage function

Furthermore also the damage (and therefore the initial values for the

second stage) depend on the defense capital and the high water level.

d(Kd (t),W (t)) =

{
1− e−(W (t)+ξd Kd (t)) if W (t) + ξdKd (t) ≥ Kd (t)

0 else

We can define the damage (=share of capital which gets destroyed) for

the model as the damage from the expected water level or the expected

damage, i.e.

d(Kd (t)) := d(Kd (t),EW (t)) or d(Kd (t)) := Ed(Kd (t),W (t))
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Transformation II (into an vintage/age-structured model)

Transformation into a vintage model — Boukas (1990) +

Wrzaczek (2017)

We introduce every possible switching time as a vintage s in the model

additionally:

Before the flood −→ After the flood at timepoint s

Ki (t) −→ K̃i (t, s)

c(t) −→ c̃(t, s)

id (t) −→ ĩd (t, s)

What are the benefits of this transformation?

Can be solved more efficiently in numerical analysis.

Optimal decisions for all (temporal) possible flood scenarios.
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Benchmark solution

Benchmark-Model

Time horizont T 10

Utility/Preferences ρ 0.03

Depreciation rates δy 0.02

δd 0.001

Flood damages ξd 0.1

Stochastic properties θ3 0.28

of floods λ 0.1

Initial capital K 0
y 1

stocks K 0
d 0.4

Salvage values Sy (Ky ) 0

Sd (Kd ) 0

Table: Parameter values for the benchmark solution
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Benchmark solution
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Sensitivity analysis

Benefits of flood prevention (Sensitivity analysis)

Analyse the optimal behaviour with and without possible investment

in defense capital (i.e. id (t) = 0)

Sensitivity analysis w.r.t.

the initial level of defense capital kd ,

the initial level of production capital ky ,

the time horizon T ,

the cost structure of flood protection investments θ1.

M. Freiberger Opt. prevention and adaptation 05.02.2018 12 / 14



Sensitivity analysis

Initial capital stocks
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Sensitivity analysis

Initial capital stocks
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Sensitivity analysis

Time horizon and prevention costs
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Sensitivity analysis
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Sensitivity analysis

Additional material
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Sensitivity analysis

max
c(t),id (t)

Eτ

 τ∫
0

e−ρtU(c(t))dt + e−ρτV ∗(x(τ), τ)


s.t.: k̇y (t) = Aky (t)

α − c(t)− Q(id(t))− δyky (t) ky (0) = ky
0

k̇d(t) = id(t)− δdkd(t) kd(0) = kd
0

V ∗(x(τ), τ) = max
c(t),id (t)

∫ T

τ

e−ρ(t−τ)U(c(t))dt + e−ρ(T−τ) (S(ky (T )) + S(kd(t)))

s.t.: k̇y (t) = Aky (t)
α − c(t)− Q(id(t))− δyky (t)

ky (τ) = lim
s→τ−

(1− d(kd(s)))ky (s)

k̇d(t) = id(t)− δdkd(t)

kd(τ) = lim
s→τ−

(1− d(kd(s)))kd(s)
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Sensitivity analysis

High water level / flood distribution

We can show that the following property holds (conditional distribution
function)

P
[
W (t) ≤ w |W (t) ≥ kd(t)− ξdkd(t)

]
= 1−

(
1 + θ3 − θ3w

1 + θ3 − θ3(1− ξd)kd(t)

) 1
θ3

After tedious calculations we can show that

EHW (t) = 1 +
(1− ξd )

1 + θ3
kd (t)

And therefore the damage function

d(kd (t)) := d(kd (t),EHW (t)) = 1− e
−
(
1+

1+θ3ξd
1+θ3

kd (t)
)
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Sensitivity analysis

Expected damage

As d(...) is concave in HW (t) it holds

Ed(kd (t),HW (t)) < d(kd (t),EHW (t))

Therefore using the expected damage might be more accurate.

But the expected damage is far more complicated and can not be

done analytically for all values of θ3. (Incomplete Gamma function or

complicated summations)

Nevertheless we will further assume we have a damage function

d(kd (t)).
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Sensitivity analysis

Distribution of flood occurrence

Assume distribution similar to Viglione (2014)

The arrival time of high water levels is exponentially distributed

fexp(t) = λe−λt · 1[0,∞)(t)

with the mean value of 1
λ

The high-water level (at occurrence) is Pareto-distributed.

P
[
W ≤ w |Υ(t) = 0

]
= 1−

(
1− θ3

1 + θ3
w

)1/θ3
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Sensitivity analysis

Need probability, that high water level leads to flood

p(t) = P
[
W (t) + ξdkd (t) > kd (t)

]
= 1− P

[
W (t) ≤ (1− ξd )kd (t)

]
=

(
1− θ3

1 + θ3
(1− ξd )kd

)1/θ3

Now we can calculate the distribution function of the time of flood

appearance τ by

P [τ ≤ t] =

∫ t

0
fexp(t̃)p(t̃)dt̃ =

∫ t

0
ffl (t̃)dt̃ =: Ffl (t)

and we obtain the hazard rate

ηfl (t) =
fexp(t)p(t)

1−
∫ t
0 fexp(t̃)p(t̃)dt̃

=
fexp(t)p(t)

1− Ffl (t)

M. Freiberger Opt. prevention and adaptation 05.02.2018 14 / 14



Sensitivity analysis

The damage function

Problem that damage is still stochastic as water level above dike height is

stochastic.

d(kd (t),W (t)) =

{
1− e−(W (t)+ξd kd (t)) if W (t) + ξdkd (t) ≥ kd (t)

0 else

Using the expected water level leads to

d(kd (t)) := d(kd (t),EHW (t)) = 1− e
−
(
1+

1+θ3ξd
1+θ3

kd (t)
)
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Sensitivity analysis

Properties of the damage function
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Transformation I (into a deterministic model)

Transformation into a det. model— Boukas (1990)

max
c(t),id (t)

T∫
0

e−ρtZ1(t)

[
u(c(t)) + ηfl

(
t,Kd (t),Z1(t)

)
V ∗(x(t), t)

]
dt

s.t.: K̇y (t) = AKy (t)α − c(t)− Q(id (t))− δyKy (t) Ky (0) = K y
0

K̇d (t) = id (t)− δdKd (t) Kd (0) = Kd
0

Ż1(t) = −fexp(t)p(Kd (t)) Z1(0) = 1

with the same second stage as before.
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Transformation I (into a deterministic model)

Time

Capital

T

Time of
flood

45°90°
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Transformation I (into a deterministic model)

Properties of two stage optimal control problems

Deterministic two-stage optimal control problems can in general be solved

numerically, but have several disadvantages:

The objective value of the second stage has to be theoretically

calculated for every possible starting point and all possible initial state

combinations.

This is either numerically very expensive or the objective function has

to be interpolated.

If the objective function gets interpolated we loose a lot of

information about the optimal controls in the second stage.
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Transformation I (into a deterministic model)

Difference between stochastic and vintage formulation

Stochastic formulation:

Analyse solution along each panel.

Aggregate over all panels

Vintage formulation

Analyse cross-section of all panels at one time-point

Aggregate over all time-points

Vintage formulation now has huge advantages:

Existing algorithms for vintage-model can be adapted to obtain

numerical solutions.

Results deliver optimal behaviour for every possible flood scenario.

Information about the optimal solution across panels can be obtained.
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