How Catastrophe and Financial Modelling Revolutionised the Insurance Industry

David Simmons: Managing Director, Capital, Science and Policy Practice
London: 14th March
Catastrophe Reinsurance Pricing
The “Traditional” Model

- Catastrophes are, by their nature, rare events
 - Before the “modelled age” pricing was based upon recent loss history and required return
 - Pricing at near return period dictated by recent history (burning cost)
 - Pricing at far return periods set by minimum return requirements (minimum rate on line)

- Concept of “the bank” and “payback” prevailed
 - When loss occurred reinsured was in effect calling in their “bank” of premiums paid in clean years
 - If bank insufficient then rates in future years increased so that reinsurer was paid back over a fixed time period
 - But these arrangements were non-contractual, market practice only

- Result was that catastrophe reinsurance pricing was very reactive
 - When losses occurred prices increased steeply
 - In period of no losses prices tended to drift down due to market pressure
 - Exacerbated by tendency for some reinsurers to exit post-loss and new entrants emerge when rates are high
Catastrophe Reinsurance Pricing
1990s UK Catastrophe Example

- Catastrophe Market in 1990 was already stressed
 - Large “1 in 100” windstorm loss in 1987 - 87J – USD 3.1m (original values per Munich Re)
 - Other market losses: Piper Alpha and Hurricane Gilbert (1988), Hurricane Hugo Exxon Valdez tanker (1989) tested catastrophe and specifically the Lloyd’s market

- Storm 90A or Daria in January caused insurance losses event greater than 87J – USD 5.1m
 - Followed by a series of other smaller storms including Vivian in February costing USD 2.1m

- In 1991 UK catastrophe prices reinsurance prices spiked in reaction to these losses
 - Prices more than tripling on average (source Willis Re)
 - Prices continued to increase in 1992 (impact of Hurricane Andrew) and 1993 as the LMX spiral, partially caused/revealed by this sequence of losses reduced ability of reinsurers to protect themselves so further reducing capacity
 - Prices peaked in 1994 with UK catastrophe reinsurance rates over 5 times 1990 levels
The Answer: Catastrophe Modelling

- In 1984 Don Friedman published a paper outlining how to model catastrophe losses using simulated events.
- Put into practice by Karen Clark, working for reinsurance broker Blanche, in the late 80s for US Hurricane (cleverly she kept the IPR).
- In early 1991/2 London reinsurance broker Greig Fester created the first UK storm and flood models.
The Brave New Modelled World

- Prevailing view was that new modelling would damp reinsurance pricing movements
 - Pricing now technical rather than reactive
 - New market entrants in Bermuda aggressively predicated their offering on this new technical approach
 - Beginning of breakdown of old bank/payback model
 - Insureds were tempted by lower prices of new technical reinsurers, breaking gentlemen’s payback agreements
- Threat of Capital Markets entry to market was widely believed to further constrain pricing
 - New Bermuda capital could leave as fast as it arrived, triggering price increases?
 - But capital market players, with “infinite capital” attracted to new zero beta class would stay/pile in post loss?
 - Prices declines steadily from 1994 to 2000 as confidence In the modelling increased and memory of 1990 weakened, helped by a benign period for European Storms and the broader global catastrophe market
But shocks still have an impact

- 9/11 in 2001 provided an unexpected shock to the system
 - Not a UK loss, not a natural catastrophe, but a major threat to the health of reinsurers
 - Market Loss circa USD 32m, over 50% higher than the highest natural catastrophe, Hurricane Andrew
 - P&C insurers suffered real losses to their capital (chart below source Insurance Information Institute)
 - Price impacts were felt throughout the market, UK prices jumped despite there being no underlying change to the assessed UK catastrophe risk and no actual UK catastrophe losses
 - The reactive kick-up in pricing was not limited to the UK – all markets showed a similar picture
 - Although not a model failure, the multi-class nature of loss caused reinsurers to question their base assumptions
Post 9/11
A series of disappointments

- The catastrophe market has proven to be very resilient in the current millennium despite a series of major events, each revealing a flaw in underlying modelling assumptions
 - Hurricane Katrina: Levee burst/flood not modelled
 - Hurricanes Katrina/Rita/Wilma: Hurricane clustering
 - Sichuan Earthquake: Missed fault
 - Japanese Earthquake: Tsunami not modelled, intensity of earthquake on fault
 - New Zealand Earthquake: Liquefaction impacts, intensity of earthquake on fault, aftershocks
 - Australian Flood: Unmodelled, scale/intensity, classification (riverine vs flash flood)
 - Thai Flood: Unmodelled, contingent business interruption claims, scale
- But the re/insurance industry remained resilient to all of these despite modelling flaws
 - Why? Despite problems with catastrophe models, their introduction has lead to as greater appreciation of risk, portfolio development, aggregate control and data quality
- Capital market involvement in reinsurance is growing BUT not reason for stability
 - Capital markets took fright after “model error” of Katrina, retreated from indemnity deals to parametric trigger
 - Now back, largely driven by seeking any asset with a return with low correlation to market risk
 - Ironically, it was market risk that caused the biggest impact on re/insurers, the 2008/2009 asset crash, but no significant long-term casualties (other than AIG)
Pricing trends from 4 major markets

U.K.

U.S. – Nationwide

France

Australia
The Psychology of Catastrophe Model Use

- The human dimension catastrophe model use cannot be overlooked
 - In 1990s the London market particularly was losing business to more technical “professional reinsurers”
 - Reinsurance brokers’, then modelling firm’s, catastrophe models were the solution
 - At least we had a new rational way to access the value of, and price, reinsurance

But…

- The early catastrophe models were oversold and over bought
 - Modellers downplayed the inherent uncertainty in the models
 - Model “buyers” didn’t want to hear about uncertainty

- Early commercial (vendor) models were black boxes
 - Modellers protected their IPR jealously

- It was the age of “the computer says no” (or more dangerously yes)
 - Insurance companies had little in-house expertise in catastrophe modelling
 - Many reinsurers bought into the idea without necessarily investing in understanding
 - There were beacons but most of the re/insurance market was pretty naïve
 - The capital markets even more so – no differentiation between models

- In retrospect were we lucky that the late 1990s were mostly benign but things were changing
 - Greater engagement with science
 - Growing technical teams in reinsurance brokers to “deconstruct” and challenge vendor models
 - Growing in-house expertise in reinsurers and larger insurers
Scientific Engagement

- In the 1990s the industry began to engage with academia
 - Greig Fester Hazard Research Centre at University College London
 - Risk Prediction Initiative driven by the Bermudan Biological Research Station
 - TSUNAMI: UK market scientific consortium lead out of the British Antarctic Survey
- But initial engagements had limited success
 - Language/communication difficulties
 - Tough to implement findings within existing models
 - Lack of time/personal to take results forward
- But the situation is improving
 - Financial modelling tools (eg Igloo) allowed imported catastrophe modelling results to be amended and stressed
 - Better research engagement models emerged, eg Willis Research Network
 - More “scientific staff” within reinsurance brokers and re/insurers to review and incorporate scientific findings
 - Many insurers now have Chief Scientific Officers
Regulatory drivers

- Regulation also encouraged the change towards a more considered approach
 - Banking-led principles based regulation placed onus on firms to understand their own risks
 - UK led the way with creation of FSA in 1997
 - The Basel process inspired ICAS regulatory framework required UK insurers to access their capital requirement
 - Most larger firms interpreted this as meaning they should build a stochastic capital model
 - A large driver of most firms capital was catastrophe risk

- Solvency II has cemented this change
 - There is much that can be said against Solvency II (the EU’s “new”, much delayed regulatory regime
 - Solvency II is bloated, over bureaucratic, expensive and a general pain in the ….
 - But at the heart is the excellent concept of “own view of risk”
 - Firms cannot shelter behind the opinions of others, they must own their own risk assumptions
 - This has given further impetus to closer scientific engagement and a more academic approach
 - Vendor catastrophe modellers had to be far more open about the assumptions within their models
 - Suddenly the language changed, now longer “trust us we are the experts” to “it is you call what assumptions to use but we can help you”

- Similar regulation is emerging across the world
 - Encouraged by the International Association of Insurance Supervisors’ “Insurance Core Principles (ICPs)
 - ICPs also require firms to test their own risk assumptions
 - Even the US, which won’t even contemplate the principle of equivalence with Solvency II, has adopted the ORSA (Own Risk Solvency Assessment)
So where are we now

- We have a much more resilient catastrophe re/insurance industry
 - Much more scientific
 - Much more technical,
 - Much smart
- Capital markets aren’t mugs either
 - Growth in catastrophe funds matching reinsurers in technical knowledge
 - Also provide glue to ensure capital sticks if a major loss occurs
- All in the garden is not perfect
 - Not all the world is modelled
 - Not all perils are modelled
 - Not all risks are modelled (residential property bias)
 - Many perils are intrinsically difficult to model (especially flood)
 - The uncertainty is models arguably is still inadequately understood
- But there are many reasons for optimism
 - Models improve as understanding improves
 - Use becomes more intelligent “models advise, they do not decide”
 - Governments and other industries are beginning to embrace the approach
 - “1 in 100 initiative”: endorsed by FSB
 - Enhanced recognition that insurers are onto something
 - Methods being applied to other perils
 - eg drought, terrorism, cyber, pandemics
Some caveats

- Is there potential systemic risk from model use?
 - Regulators (eg Solvency II) are avoiding endorsing a model or models (like Florida) rather encouraging companies to take their own view of risk
 - BUT in practice difficult to be the one different from the others
 - “Don’t get sacked for buying IBM” = “Don’t get sacked for using RMS?”
 - Need contrarians to ensure robustness?

- Be wary of surprises
 - Many Japanese insurers suffered more from the Thai Floods than the Japanese Earthquake/Tsunami
 - It’s the unknown unknowns that hurt every time

- New potential users of catastrophe models risk making the same mistakes as the re/insurance companies made in the early days
 - Naïve use, wanting to believe
 - But there are reasons to hope that lessons have been learnt
Positive initiatives

- **Greater modelling transparency**
 - Greater vendor model openness, partially under regulator pressure
 - Open platforms being developed by RMS and AIR
 - A new open-access model OASIS is now ready to go
 - Makes it easier for academics to contribute towards model development
 - Aim to create an open market in exposure, hazard and vulnerability elements of models to common data standards

- **Greater inclusiveness**
 - G8 pledge to bring 400m vulnerable people under shelter of climate insurance
 - Coupled with funding promises after Paris climate conference
 - Potential kick-start to extend modelling to the developing world modelling initiatives
 - Creation of the Insurance Development Forum (IDF)
 - Co-chaired by Jorge Levy (World Bank CFO), Helen Clark (United Nations), Stephen Catlin (Insurance)
 - Charged with removing barriers to creation of catastrophe insurance schemes
 - IDF includes Resilience Modelling and Mapping Forum
 - Sub-group chaired by CRO of Renaissance Re, one of the smartest catastrophe reinsurers
 - Already operational
 - Charged with encouraging creation and access to models beyond current model scope (eg governmental risk, new countries and perils)
A brief couple of thoughts on Capital Modelling

- There are no barriers to building detailed capital models
 - Modelling software, eg Igloo, is mature
 - Modelling best practice well established
 - Hardware is cheap
- Explicit risk appetite statements allow targeted decision making using an internal model
 - Trade of between mean return, result volatility control and regulatory capital margin maintenance
 - Issue then becomes one of decision-making frameworks

BUT

- There are concerns
 - “Too few actuaries in the world”
 - Group think penalises innovation
 - Regulation which should be encouraging challenge process seems more interested in box-ticking
 - Too many regulators see and internal models as an attempt to arbitrage regulatory capital
- The answer must be the Use Test
 - But few concerns have properly integrated their models into board and management level decision-making
 - Development of the business plan and internal model should be hand in hand
- But is there still a still geek vs real business distinction?
 - Need business-savvy actuaries and numeric underwriters/managers
 - Don’t expect everybody to be able to do everything but distinction between the too camps must be blurred
 - The Us test, not us and them
Risk vs Return

Risk Return Analysis

Expected Underwriting Result

Margin increase in capital

Option 1
Option 2
Option 3
Option 4
Option 5
Developing A Decision Making Framework

- What is optimal for an earnings measure will rarely be optimal for capital.
- Increasingly decision making will need to be nuanced.
- The challenge – to design products to meet multiple objectives.
- Your reinsurance broker should help you agree a decision making framework.

Risk Return Analysis: (Re)Insurance Cost vs 1 in 10 Worst Case Result

Risk Return Analysis: (Re)Insurance Cost vs 1 in 100 Worst Case Result
Example: Comparing Option Efficiency against all KPIs

- Reinsurance options are compared to the equivalent measure for the no reinsurance option.
- The closer to the edge of the web, the more efficient the option.
- Here the option at 10 o’clock is clearly optional for Return on Capital but sub-optimal against the other three measures.
- But which risk measure(s) will drive the decision?
Conclusions

- Catastrophe and Financial Modelling has revolutionised the Insurance Industry
 - It has hard to overstate how the industry has changed
 - Moved from “underwriter born not made” to a technically aware, scientifically driven market
- But there have been mistakes on the way
 - It has taken the market time to realise how best to use the models
 - And we are still some way from properly embedding models within broad decision-making
- Regulation has driven the process forward
 - But often more by accident
 - Concept of “own risk” is positive, but risk of groupthink by regulators and companies; tough to be different
- A new dawn may be approaching
 - Open access catastrophe platforms and developing data standards
 - New industries embracing the modelling techniques pioneered by re/insurance
- A time of great opportunity
 - For modelling professionals: new challenges, new markets
 - For re/insurers: new markets, new products
 - For society: greater risk understanding, greater resilience

BUT

- Let’s not forget the limitations of knowledge and the extent of uncertainty
- Always remember: models advise they do not decide
Contact

David Simmons
Managing Director
Capital, Science and Policy Practice

david.c.simmons@willistowerswatson.com
+44 20 3124 8917